85 research outputs found

    Cortical hypertrophy with a short, curved uncemented hip stem does not have any clinical impact during early follow-up

    Get PDF
    Background: Short stems have become more and more popular for cementless total hip arthroplasty in the past few years. While conventional, uncemented straight stems for primary total hip arthroplasty (THA) have shown high survival rates in the long term, it is not known whether uncemented short stems represent a reasonable alternative. As cortical hypertrophy has been reported for short stems, the aim of this study was to determine the radiographic prevalence of cortical hypertrophy and to assess the clinical outcome of a frequently used short, curved hip stem. Methods: We retrospectively studied the clinical and radiographic results of our first 100 consecutive THAs (97 patients) using the Fitmore® hip stem. Mean age at the time of index arthroplasty was 59 years (range, 19 – 79 years). Clinical outcome and radiographic results were assessed with a minimum follow-up of 2 years, and Kaplan-Meier survivorship analysis was used to estimate survival for different endpoints. Results: After a mean follow-up of 3.3 years (range, 2.0 – 4.4 years), two patients (two hips) had died, and three patients (four hips) were lost to follow-up. Kaplan-Meier analysis estimated a survival rate of 100 % at 3.8 years, with revision for any reason as the endpoint. No femoral component showed radiographic signs of loosening. No osteolysis was detected. Cortical hypertrophy was found in 50 hips (63 %), predominantly in Gruen zone 3 and 5. In the cortical hypertrophy group, two patients (two hips; 4 %) reported some thigh pain in combination with pain over the greater trochanter region during physical exercise (UCLA Score 6 and 7). There was no significant difference concerning the clinical outcome between the cortical hypertrophy and no cortical hypertrophy group. Conclusions: The survival rate and both clinical and the radiographic outcome confirm the encouraging results for short, curved uncemented stems. Postoperative radiographs frequently displayed cortical hypertrophy but it had no significant effect on the clinical outcome in the early follow-up. Further clinical and radiographic follow-up is necessary to detect possible adverse, long-term, clinical effects of cortical hypertrophy

    Incremental Non-Rigid Structure-from-Motion with Unknown Focal Length

    Full text link
    The perspective camera and the isometric surface prior have recently gathered increased attention for Non-Rigid Structure-from-Motion (NRSfM). Despite the recent progress, several challenges remain, particularly the computational complexity and the unknown camera focal length. In this paper we present a method for incremental Non-Rigid Structure-from-Motion (NRSfM) with the perspective camera model and the isometric surface prior with unknown focal length. In the template-based case, we provide a method to estimate four parameters of the camera intrinsics. For the template-less scenario of NRSfM, we propose a method to upgrade reconstructions obtained for one focal length to another based on local rigidity and the so-called Maximum Depth Heuristics (MDH). On its basis we propose a method to simultaneously recover the focal length and the non-rigid shapes. We further solve the problem of incorporating a large number of points and adding more views in MDH-based NRSfM and efficiently solve them with Second-Order Cone Programming (SOCP). This does not require any shape initialization and produces results orders of times faster than many methods. We provide evaluations on standard sequences with ground-truth and qualitative reconstructions on challenging YouTube videos. These evaluations show that our method performs better in both speed and accuracy than the state of the art.Comment: ECCV 201

    Fifty-six percent of proximal femoral cortical hypertrophies 6 to 10 years after Total hip arthroplasty with a short Cementless curved hip stem – a cause for concern?

    Get PDF
    Background: Thigh pain and cortical hypertrophies (CH) have been reported in the short term for specific short hip stem designs. The purpose of the study was to investigate 1) the differences in clinical outcome, thigh pain and stem survival for patients with and without CHs and 2) to identify patient and surgery-related factors being associated with the development of CHs. Methods: A consecutive series of 233 patients with 246 hips was included in the present retrospective diagnostic cohort study, who had received a total hip arthroplasty (THA) between December 2007 and 2009 with a cementless, curved, short hip stem (Fitmore, Zimmer, Warsaw, IN, USA). Clinical and radiographic follow-up, including the radiographic parameters for hip geometry reconstruction, were prospectively assessed 1, 3, and 6 to 10 years after surgery. Results: Cortical hypertrophies were observed in 56% of the hips after a mean of 7.7 years, compared to 53% after 3.3 years being mostly located in Gruen zone 3 and 5. There was no significant difference for the Harris Hip Score and UCLA score for patients with and without CHs. Only one patient with a mild CH in Gruen zone 5 and extensive heterotopic ossifications around the neck of the stem reported thigh pain. The Kaplan Meier survival rate after 8.6 years was 99.6% (95%-CI; 97.1–99.9%) for stem revision due to aseptic loosening and no association with CHs could be detected. Postoperative increase in hip offset was the only risk factor being associated with the development of CHs in the regression model (ΔHO; OR 1.1 (1.0–1.2); p = 0.001). Conclusions: The percentage of cortical hypertrophies remained almost constant in the mid-term compared to the short-term with the present cementless short hip stem design. The high percentage of cortical hypertrophies seems not be a cause for concern with this specific implant in the mid-term. Level of evidence: Diagnostic Level I

    Model-free Consensus Maximization for Non-Rigid Shapes

    Full text link
    Many computer vision methods use consensus maximization to relate measurements containing outliers with the correct transformation model. In the context of rigid shapes, this is typically done using Random Sampling and Consensus (RANSAC) by estimating an analytical model that agrees with the largest number of measurements (inliers). However, small parameter models may not be always available. In this paper, we formulate the model-free consensus maximization as an Integer Program in a graph using `rules' on measurements. We then provide a method to solve it optimally using the Branch and Bound (BnB) paradigm. We focus its application on non-rigid shapes, where we apply the method to remove outlier 3D correspondences and achieve performance superior to the state of the art. Our method works with outlier ratio as high as 80\%. We further derive a similar formulation for 3D template to image matching, achieving similar or better performance compared to the state of the art.Comment: ECCV1

    Long-term durability of alumina ceramic heads in THA

    Get PDF
    Background: The optimal type of bearing for hip arthroplasty remains a matter of debate. Ceramic-on-polyethylene (CoP) bearings are frequently used in younger and more active patients to reduce wear and increase biocompatibility compared to Metal-on-Polyethylene (MoP) bearings. However, in comparison to metal heads, the fracture risk of ceramic heads is higher. In addition, ceramic head fractures pose a serious complication which often necessitates major revision surgery. To date, there are no long-term data (>20 years of follow-up) reporting fracture rates of the ceramic femoral heads in CoP bearings. The purpose of this research was to investigate long-term CoP fracture rate. Methods: We evaluated the clinical and radiographic results of 348 cementless THAs treated with 2nd generation Biolox® Al2O3 Ceramic-on-Polyethylene (CoP) bearings consecutively implanted between January 1985 and December 1989. The mean age at implantation was 57 years. The patients were followed for a minimum of 20 years. At the final 111 had died, and 5 were lost to follow-up. The cumulative incidence of ceramic head fractures in the long-term was estimated using a competing risk analysis. Results: The cumulative incidence of ceramic head fracture after 22-years was estimated with a competing risk analysis at 0.29% after 22-years (SE = 2.09%; 95% - CI: 0.03-1.5%). The radiographic analysis revealed no impending failures at final follow-up. Discussion/Conclusion: The fracture rate of second-generation ceramic heads using a CoP articulation remains very low into the third decade after cementless THA

    Influence of surgical approach on component positioning in primary total hip arthroplasty

    Get PDF
    Background: Minimal invasive surgery (MIS) has gained growing popularity in total hip arthroplasty (THA) but concerns exist regarding component malpositioning. The aim of the present study was to evaluate femoral and acetabular component positioning in primary cementless THA comparing a lateral to a MIS anterolateral approach. Methods: We evaluated 6 week postoperative radiographs of 52 hips with a minimal invasive anterolateral approach compared to 54 hips with a standard lateral approach. All hips had received the same type of implant for primary cementless unilateral THA and had a healthy hip contralaterally. Results: Hip offset was equally restored comparing both approaches. No influence of the approach was observed with regard to reconstruction of acetabular offset, femoral offset, vertical placement of the center of rotation, stem alignment and leg length discrepancy. However, with the MIS approach, a significantly higher percentage of cups (38.5 %) was malpositioned compared to the standard approach (16.7 %) (p = 0.022). Conclusions: The MIS anterolateral approach allows for comparable reconstruction of stem position, offset and center of rotation compared to the lateral approach. However, surgeons must be aware of a higher risk of cup malpositioning for inclination and anteversion using the MIS anterolateral approach

    VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

    No full text
    We present a novel approach for the reconstruction of dynamic geometric shapes using a single hand-held consumer-grade RGB-D sensor at real-time rates. Our method does not require a pre-defined shape template to start with and builds up the scene model from scratch during the scanning process. Geometry and motion are parameterized in a unified manner by a volumetric representation that encodes a distance field of the surface geometry as well as the non-rigid space deformation. Motion tracking is based on a set of extracted sparse color features in combination with a dense depth-based constraint formulation. This enables accurate tracking and drastically reduces drift inherent to standard model-to-depth alignment. We cast finding the optimal deformation of space as a non-linear regularized variational optimization problem by enforcing local smoothness and proximity to the input constraints. The problem is tackled in real-time at the camera's capture rate using a data-parallel flip-flop optimization strategy. Our results demonstrate robust tracking even for fast motion and scenes that lack geometric features

    {VolumeDeform}: {R}eal-Time Volumetric Non-rigid Reconstruction

    No full text
    • …
    corecore